

Photocarcinogenesis Study of Glycolic Acid and Salicylic Acid in SKH-1 Mice

NTP Technical Report 524

Paul C. Howard, PhD

NTP Center for Phototoxicology,
National Center for Toxicological Research,
U.S. Food & Drug Administration,
Jefferson, AR

OUTLINE

```
Background
Study methods
     Study design
     Test Articles
     Doses of Light
Significant findings
     Time to First Tumor
     Pathology findings
Conclusions
Tumor multiplicity
Acknowledgments
```


BACKGROUND

Correction of photoaging

- Uses of AHA and BHA
 Topical creams
 Higher concentrations as chemical peels
 Lower concentration as cleanser, moisturizer, etc
- Structures of glycolic and salicylic acid

BACKGROUND

- FDA nomination

Use on photo-exposed skin; increased sensitivity to sun

Removal of stratum corneum Increased cell proliferation

PURPOSE OF STUDY

Test effect of topical application of cream containing AHA (glycolic acid) or BHA (salicylic acid) on UVB induced skin cancer development (photococarcinogenesis)

STUDY DESIGN

Test Animal

Crl: SKH-1 (hr⁻/hr⁻) hairless mice males and females 18 or 36 mice/group 8 weeks of age at start of treatment

Test Article

Topically applied (AM)

~2 mg/cm² cream, volumetric delivery

<30 sec application

base of tail to base of neck; to tangent on flanks

STUDY DESIGN (page 2)

Irradiation with light

0, 0.3, 0.6 and 0.9 MED^{instrumental} (sub-erythemic) Treatment (PM) 5 days/week

Observations

Standard clinical observations recorded

Weekly tumor measurements (<1, 1-2, 2-3, 3-5,

5-7, 7-10, >10 mm)

40 weeks, test chemical and light

12 weeks, observation

TEST GROUPS

Cream Application	No Light	0.3 MEDi	0.6 MEDi	0.9 MED ⁱ
None	36*	36	36	36
Control cream, pH 3.5	18	18	18	_
4% Glycolic acid (GA), pH 3.5	18	18	18	_
10% GA, pH 3.5	18	18	18	_
2% Salicylic acid (SA), pH 4	18	18	18	_
4% SA, pH 4	18	18	18	-

^{*}Number of males and females per group

CONTENT OF CONTROL CREAM

Water, 70.02% Glycerin (96%), 3.25% Keltrol T solution (2%), 8.00% Veegum Ultra, 1.20% Cetearyl alcohol, 2.50% Eutanol G, 4.00% Dimethicone DC200-100, 0.80% Lipomulse 165, 2.40% Brij 721 (Steareth-21), 2.40% Lipowax D, 4.00% Germaben II, 1.00% Phosphoric acid (8.5%), 0.43% pH 3.5

DATA FROM STUDY, STATISTICAL ANALYSES

SURVIVAL

Mouse is removed from study if -

- Moribund
- Health status inconsistent with continuation
- Tumor reached 10 mm
- Tumors merged eliminating tumor individuality
- Skin condition inconsistent with continuation on study

NTP National Toxicology Program

TIME TO FIRST TUMOR ≥1 mm: no cream

TIME TO FIRST TUMOR ≥1 mm: no cream vs. control cream

TIME TO FIRST TUMOR ≥1 mm: no cream vs. control cream

Group mean time to tumor (weeks)

	None	Control Cream	
Female			
0.3 MED/d	48.5 ± 0.7	37.2 ± 2.3	p=0.001
0.6 MED/d	33.7 ± 0.9	28.7 ± 1.5	p=0.005
Male			
0.3 MED/d	48.6 ± 1.3	34.9 ± 2.0	p=0.001
0.6 MED/d	34.8 ± 1.0	26.1 ± 1.0	p=0.001

CONCLUSIONS (1)

- Application of control cream decreased the group mean time to first tumor (≥ 1 mm),
- As a result, glycolic acid and salicylic acid groups should be compared to control cream results.

TIME TO FIRST TUMOR ≥1 mm: cream <u>+</u> glycolic acid

TIME TO FIRST TUMOR >1 mm: cream <u>+</u> glycolic acid

Group mean time to tumor (weeks)

	Control Cream	4% GA	10% GA
Female			
0.3 MED/d	37.2 ± 2.3	37.8 ± 2.3	44.2 ± 1.7
	ns (trend)	ns	ns
0.6 MED/d	28.7 ± 1.5	27.6 ± 1.4	28.1 ± 1.1
	ns	ns	ns
Male			
0.3 MED/d	34.9 ± 2.0	36.6 ± 1.3	31.8 ± 1.4
	p=0.034	ns	ns
0.6 MED/d	26.1 ± 1.0	24.5 ± 0.7	26.3 ± 1.0
	ns	ns	ns

TIME TO FIRST TUMOR ≥1 mm: cream ± salicylic acid

TIME TO FIRST TUMOR ≥1 mm: cream + salicylic acid

Group mean time to tumor (weeks)

	Control Cream	2% SA	4% SA
Female			
0.3 MED/d	37.2 ± 2.3	41.5 ± 2.2	48.9 ± 1.6
	p=0.001N	ns	p=0.002N
0.6 MED/d	28.7 ± 1.5	31.1 ± 1.3	32.1 ± 1.5
	ns	ns	ns
Male			
0.3 MED/d	34.9 ± 2.0	33.4 ± 2.1	41.1 ± 3.0
	p=0.008N	ns	p=0.003N
0.6 MED/d	26.1 ± 1.0	26.7 ± 1.0	30.3 ± 1.5
	p=0.005N	ns	p=0.008N

CONCLUSIONS (2)

Compared to control cream,

- Glycolic acid did not have consistent effect on skin tumor (≥ 1 mm) development.
- Salicylic acid increased mean time to first tumor (≥ 1 mm) (*i.e.* protective) at 0.3 MED/d in females, and 0.3 and 0.6 MED/d in males.

SQUAMOUS CELL PAPILLOMA

SQUAMOUS CELL PAPILLOMA

CARCINOMA IN SITU

CARCINOMA IN SITU

SQUAMOUS CELL CARCINOMA

SQUAMOUS CELL CARCINOMA

BASAL CELL CARCINOMA

BASAL CELL CARCINOMA

EXAMPLE OF BLOCK CHART

FEMALE MICE, GLYCOLIC ACID; SQUAMOUS CELL PAPILLOMA

Test Article Concentration

FEMALE MICE, GLYCOLIC ACID; CARCINOMA IN SITU

Test Article Concentration

FEMALE MICE, GLYCOLIC ACID; SQUAMOUS CELL CARCINOMA

Test Article Concentration

FEMALE MICE, GLYCOLIC ACID; ALL SKIN CANCERS

Test Article Concentration

CONCLUSIONS, PATHOLOGY (1)

- Glycolic acid did not affect tumorigenesis of SSL in female mice.

MALE MICE, GLYCOLIC ACID; SQUAMOUS CELL PAPILLOMA

Test Article Concentration

MALE MICE, GLYCOLIC ACID; CARCINOMA IN SITU

Test Article Concentration

MALE MICE, GLYCOLIC ACID; SQUAMOUS CELL CARCINOMA

Test Article Concentration

MALE MICE, GLYCOLIC ACID; ALL SKIN CANCERS

Test Article Concentration

CONCLUSIONS, PATHOLOGY (2)

- Glycolic acid did not affect tumorigenesis of SSL in female mice,
- Glycolic acid did not consistently affect tumorigenesis of SSL in male mice.

FEMALE MICE, SALICYCLIC ACID; SQUAMOUS CELL PAPILLOMAS

Test Article Concentration

FEMALE MICE, SALICYLIC ACID; CARCINOMA IN SITU

Test Article Concentration

FEMALE MICE, SALICYLIC ACID; SQUAMOUS CELL CARCINOMA

Test Article Concentration

FEMALE MICE, SALICYLIC ACID; ALL SKIN CANCERS

Test Article Concentration

CONCLUSIONS, PATHOLOGY (3)

- Glycolic acid did not affect tumorigenesis of SSL in female mice,
- Glycolic acid did not consistently affect tumorigenesis of SSL in male mice
- Salicylic acid was protective, reducing tumorigenesis of SSL in female mice.

MALE MICE, SALICYLIC ACID; SQUAMOUS CELL PAPILLOMA

Test Article Concentration

MALE MICE, SALICYLIC ACID; CARCINOMA IN SITU

Test Article Concentration

MALE MICE, SALICYLIC ACID; SQUAMOUS CELL CARCINOMA

Test Article Concentration

MALE MICE, SALICYLIC ACID; ALL SKIN CANCERS

Test Article Concentration

CONCLUSIONS, PATHOLOGY (4)

- Glycolic acid did not affect tumorigenesis of SSL in female mice,
- -Glycolic acid did not consistently affect tumorigenesis of SSL in male mice
- Salicylic acid was protective, reducing tumorigenesis of SSL in female and male mice.

TUMOR MULTIPLICITY

- Tumor multiplicity statistical analyses had not been applied to photococarcinogenicity studies with SKH-1 mice.

- NCP sponsored a Tumor Multiplicity Working group to consider multiplicity modeling:

Kodel *et al.*, Kokaska model Dunson *et al.*, applied to Tg.AC

TUMOR MULTIPLICITY

The Tumor Multiplicity Working Group requested that we:

- (1) Revisit modeling method, use pointprocess regression modeling approach. √
- (a) Anderson-Gill multiplicative intensity point process regression model. √
- (b) Tumor type model.
- (c) Tumor growth model.

MODELING APPROACHES USED FOR TUMOR MULTIPLICITY

- (i) Anderson-Gill multiplicative intensity point process regression model.
- (ii) Mann-Whitney U-test (nonparametric Akritas-Arnold, essentially Kruskal-Wallis) as used in SENCAR mouse studies (LOCF; pairwise comparison at 40-week asymptote).
- (iii) Wei-Lin-Weissfeld recurrent event model.

TUMOR MULTIPLICITY, FEMALE MICE, GLYCOLIC ACID

TUMOR MULTIPLICITY, MALE MICE, GLYCOLIC ACID

TUMOR MULTIPLICITY, FEMALE MICE, SALICYLIC ACID

TUMOR MULTIPLICITY, MALE MICE, SALICYLIC ACID

TUMOR MULTIPLICITY, ANDERSON-GILL METHOD

----- Female ----- Male -----

	Vehicle	4% GA	10% GA	Vehicle	4% GA	10% GA
Relative Hazard Ratio						
0.3 MED	100%	108%	106%	100%	98%	166% p=0.042
0.6 MED	100%	110%	105%	100%	109%	105%

TUMOR MULTIPLICITY, ANDERSON-GILL METHOD

----- Female ----- Male -----

	Vehicle	2% SA	4% SA	Vehicle	2% SA	4% SA
Relative Hazard Ratio						
0.3 MED	100%	62%	18% p=0.031	100%	37% p=0.008	16% p<0.001
0.6 MED	100%	75% p<0.001	52% p<0.001	100%	61% p=0.004	54% p=0.002

NTP National Toxicology Program

CONCLUSIONS, TUMOR MULTIPLICITY (1)

Only effect of glycolic acid was in male mice,

- 10% glycolic acid increased the tumor multiplicity relative risk at 0.3 MED/day.

Application of salicylic acid,

- decreased risk at 2% SA and 4% SA at both doses of SSL in males,
- decreased risk in females with 4% SA at 0.3 MED/day, and with 2% SA and 4% SA at 0.6 MED/day.

SUMMARY CONCLUSIONS

Application of control cream,

- increased SSL effect (mean time to tumor, all skin cancers).

SUMMARY CONCLUSIONS

The application of cream containing glycolic acid had an inconsistent effect:

- decreased mean time-to-tumor and increased squamous cell carcinoma only at 0.3 MED in male mice, and only with dosetrend analysis,
- tumor multiplicity was increased only in male mice at 10% GA and 0.3 MED.

SUMMARY CONCLUSIONS

The application of cream containing salicylic acid was in general protective:

- at 4% SA, increased time to tumor, decreased carcinoma *in situ* and all cancers, and tumor multiplicity at 0.3 MED/day (both sexes),
- decreased multiplicity at all doses of light and salicylic acid doses (except 2% SA, 0.3 MED/day, females).

ACKNOWLEDGEMENTS

NCTR- B. Miller, L. Couch, B. Thorn, R. Kodell, D. Molefe, W.T. Allaben, F. Beland, J. Carraway, W. Witt; Z-Tech Corp. (S. Goldman, K. Carroll); Bionetics Animal Care staff (L. Conner; Bionetics (R. Rasmussen);

<u>Pathology</u> – Toxicological Pathology Associates staff (P. Mellick)

<u>Argus</u> – P.D. Forbes, A. Hoberman, C. Sambuco, D. Learn, M. Arocena

<u>FDA</u> – W.G. Wamer, J.Z. Beer, J. Bailey, A. Dennis, A. Kornhauser

BSI – M. Joheim, S. Gunnels

Photocarcinogenesis Study of Glycolic Acid and Salicylic Acid in SKH-1 Mice

NTP National Toxicology Program

TUMOR MULTIPLICITY, AKRITAS-ARNOLD METHOD

	Vehicle	4% GA	10% GA	Vehicle	2% SA	4% SA
Female						
0.3 MED	ns	ns	ns	p<0.001	ns	p<0.001
0.6 MED	ns	ns	ns	p=0.006	ns	p=0.006
Male						
0.3 MED	p=0.006	ns	p=0.005	ns	ns	ns
0.6 MED	ns	ns	ns	p=0.004	ns	p=0.004

TUMOR MULTIPLICITY, WEI-LIN-WEISSFELD METHOD

----- Female ----- Male -----

	Vehicle	4% GA	10% GA	Vehicle	4% GA	10% GA
Relative Hazard Ratio						
0.3 MED	100%	108%	106%	100%	97%	174%* p=0.041
0.6 MED	100%	112%	110%	100%	115%	109%

TUMOR MULTIPLICITY, WEI-LIN-WEISSFELD METHOD

----- Female ----- Male -----

	Vehicle	2% SA	4% SA	Vehicle	2% SA	4% SA
Relative Hazard Ratio						
0.3 MED	100%	62%	18% p<0.001	100%	36% p=0.007	16% p<0.001
0.6 MED	100%	74%	48% p<0.001	100%	61% p=0.015	50% p=0.002